This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

SYNTHESES AND STRUCTURES OF [Et₄N]₂[Sn(DMIT)₃] AND [Pb(DMIT)(DMF)]_n (DMIT = 2-THIOXO-1,3-DITHIOLE-4,5-DITHIOLATO)

Tianlu Sheng^a; Xintao Wu^a; Ping Lin^a; Quanming Wang^a; Wenjian Zhang^a; Ling Chen^a ^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, F. R. China

To cite this Article Sheng, Tianlu , Wu, Xintao , Lin, Ping , Wang, Quanming , Zhang, Wenjian and Chen, Ling(1999) 'SYNTHESES AND STRUCTURES OF $[Et_4N]_2[Sn(DMIT)_3]$ AND $[Pb(DMIT)(DMF)]_n$ (DMIT = 2-THIOXO-1,3-DITHIOLE-4,5-DITHIOLATO)', Journal of Coordination Chemistry, 48: 2, 113 – 123

To link to this Article: DOI: 10.1080/00958979908027959 URL: http://dx.doi.org/10.1080/00958979908027959

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1999, Vol. 48, pp. 113-123 Reprints available directly from the publisher Photocopying permitted by license only © 1999 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint. Printed in Malaysia.

SYNTHESES AND STRUCTURES OF $[Et_4N]_2[Sn(DMIT)_3]$ AND $[Pb(DMIT)(DMF)]_n$ (DMIT = 2-THIOXO-1,3-DITHIOLE-4,5-DITHIOLATO)

TIANLU SHENG, XINTAO WU*, PING LIN, QUANMING WANG, WENJIAN ZHANG and LING CHEN

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China

(Received 30 July 1998)

Two complexes, $[Et_4N]_2[Sn(dmit)_3]$, 1, and $[Pb(dmit)(DMF)]_n$, 2, have been obtained and their structures crystallographically determined. In complex 1, the Sn atom is six-coordinated to six sulfur atoms from three dmit ligands; the anions form a one-dimensional network through $S \cdots S$ contacts shorter than 3.7Å. Complex 2 forms a two-dimensional polymer, achieved through Pb atom coordinating not only to the chelating sulfur atoms of the dithiolate fragment of dmit, but also to the sulfur atom of the thiocarbonyl group of a dmit ligand. In complex 2, the central Pb atom is six-coordinated by four sulfur atoms from dmit ligands and two oxygen atoms of N, N-dimethylformamide ligands, exhibiting a distorted octahedral structure.

Keywords: Metal-dmit complexes; tin; lead; X-ray structure

INTRODUCTION

In the last two decades, the chemistry of compounds involving dmit (dmit is 2-thioxo-1,3-dithiole-4,5-dithiolate) has been a research focus¹ due to the presence of good electrical conductivity (even superconductivity) in many planar *bis*(dmit)-metal complexes. After the discovery in 1986 of the first formally inorganic molecular superconductor (TTF)[Ni(dmit)₂] (TTF = tetrathiafulvalene),^{2(a)} research activity in this area increased and a large

Downloaded At: 14:40 23 January 2011

^{*} Corresponding author.

number of homoleptic and heteroleptic complexes with dmit have been synthesized and structurally characterized.¹⁻¹¹ These include seven charge transfer salts of dmit, $(NMe_4)_{0.5}[Ni(dmit)_2]$,³ β - $(NMe_4)_{0.5}[Pd(dmit)_2]$,⁴ $(NMe_2Et_2)_{0.5}[Pd(dmit)_2]$,⁵ $(TTF)[Ni(dmit)_2]$,² α - and α' - $(TTF)[Pd(dmit)_2]$,^{6,7} and α -(EDT-TTF)[Ni(dmit)_2],⁸ in which superconductivity has been observed. However, main-group metal complexes with dmit are rare. Herein, two new complexes with dmit, $[Et_4N]_2[Sn(dmit)_3]$, 1, and $[Pb(dmit)(DMF)]_n$, 2, are reported.

EXPERIMENTAL

The procedures for preparing 1 and 2 were carried out under nitrogen atmosphere using standard Schlenk techniques, but work up as carried out in air. The chemicals used were of A.R. grade and used without purification; 4,5*bis*(benzoylthio)-1,3-dithiole-2-thione was prepared following the detailed procedure described by Steimecke.¹² Elemental analysis was performed by the Elemental Analysis Laboratory in our Institute. IR spectra of 1 and 2 were recorded on an FT-IR spectrometer for 1 and on an F750 spectrometer for 2.

Preparation of [Et₄N]₂[Sn(dmit)₃], 1

Some 0.408 g (1.0 mmol) of 4,5-*bis*(benzoylthio)-1,3-dithiole-2-thione was dissolved in methanol (30 cm³) containing 0.046 g (2 mmol) of sodium metal. To the resulting purple solution of Na₂[C₃S₅] was added with stirring 0.295 g (0.5 mmol) of SnCl₂. After 2 h at room temperature, 25 cm³ of methanol solution containing an excess of Et₄NBr (0.32 g, 1.5 mmol) was added, precipitating the red product. This was collected by filtration and redissolved in 10 cm³ of MeCN. It was filtered after stirring for a while at room temperature, the filtrate covered with Et₂O and left to stand in the refrigerator overnight to yield red crystals of complex **1**. Yield: 0.16 g. *Anal.* calcd. for C₂₅H₄₀N₂S₁₅Sn: C, 31.01; H, 4.16; N, 2.89%. Found: C, 30.65; H, 4.57; N, 2.85%. IR (KBr pellet, cm⁻¹): 262.6(s), 280.0(s), 309.0(s), 320.8(vs), 334.8(s), 387.6(w), 483.3(vs), 521.7(vs), 780.6(vs), 883.8(s), 1001.3(vs), 1032.5(vs), 1063.3(vs), 1170.8(w).

Preparation of [Pb(dmit)(DMF)],, 2

To 5 cm^3 of a DMF solution containing 0.38 g (0.5 mmol) of $[\text{Et}_4\text{N}]_2[\text{MoO-}(\text{dmit})_2]^{13}$ was added 0.14 g (0.5 mmol) of Pb(NO₃)₂. After stirring for a while at room temperature, the reaction solution was filtered and allowed to stand

in air for several days to yield black crystals of complex 2. Yield: $0.06 \, \text{g}$. Anal. calcd. for C₆H₇NOPbS₅: C, 15.12; H, 1.48; N, 2.94%. Found: C, 14.83; H, 1.52, N, 2.81%. IR (KBr pellet, cm^{-1}): 416.6(w), 443.6(s), 462.8(vs), 538.0(m), 663.4(vs), 881.3(s), 937.2(w), 1018.2(vs), 1056.8(m), 1107.0(s),

X-ray Structure Determinations

Single crystals of complexes 1 and 2 were mounted in glass tubes. X-ray intensity data were collected on a Siemens SMART-CCD diffractometer for 1 and on an Enraf-Nonius CAD4 diffractometer for 2. The radiation used was graphite-monochromatized MoK α . Complex 1 crystallizes in the monoclinic space group Cc (No. 15), while complex 2 crystallizes in the triclinic space group P1 (No. 2). Both structures were solved by direct methods. Crystal data and details of data collection for complexes 1 and 2 are given in Table I. Atomic coordinates are given in Tables II and III. The structures of complexes 1 and 2 are given in Figures 1-4. Full lists of crystallographic data are available from the authors upon request.

$[Et_4N]_2[Sn(dmit)_3], 1$

The crystal chosen for data collection had dimensions $0.07 \times 0.10 \times 0.6$ mm. Intensities were corrected for Lorentz and polarization effects, some 3303

	1	2
Chemical formula	C25H40N2S15Sn	C6H7OPbS5
Formula weight	968.18	476.63
Crystal system:	Monoclinic, Cc (No. 15)	Triclinic, $P\overline{1}(No, 2)$
a (Å)	21.721(7)	8.2628(2)
$b(\dot{A})$	15.589(4)	8.5254(1)
$c(\dot{A})$	16.275(6)	8.9832(2)
α (°)		97.466(2)
$\beta(\mathbf{e})$	131.31(3)	104.013(2)
γ (°)		86.296(2)
$V(Å^3)$	4139(2)	608.4(2)
D_{calc} (g cm ⁻³)	1.554	2.60
Z	4	2
Diffractometer	Siemens Smart-CCD	Enraf-Nonius CAD4
Radiation	M_0K_{α} ($\gamma = 0.71073$ Å)	$M_0 K_{\alpha} (\gamma = 0.71073 \text{ Å})$
θ_{\max} (°):	23.27	25
$T(\mathbf{K})$:	293	293
Independent reflections	5099	2147
Observed reflections	$3303 [I > 2.0\sigma(I)]$	$1972 [I > 2.0\sigma(I)]$
R	0.0327	0.0324
R _w	0.0703 ^a	0.0376 ^b

TABLE I Crystallographic data for complexes 1 and 2

^a $w = [\sigma^2(Fo)^2 + (0.0331P)^2]^{-1}$, where $P = ((Fo)^2 + 2(Fc)^2)/3$; ^b $w = [\sigma^2(Fo)^2 + (0.020Fo) + 1.000]^{-1}$.

T.-L. SHENG et al.

Atom	x/a	y/b	z/c	Ueq
Sn	0.8637(2)	0.25088(3)	1.2365(3)	0.0405(2)
S1	1.0186(4)	0.2392(4)	1.3697(6)	0.050(2)
S2	0.8745(4)	0.1371(4)	1.3594(6)	0.051(2)
S3	1.1114(4)	0.0740(4)	1.4647(6)	0.058(2)
S4	0.9873(4)	-0.0141(4)	1.4469(6)	0.052(2)
S5	1.1451(5)	-0.1032(5)	1.5480(6)	0.067(2)
S6	0.8543(5)	0.1345(4)	1.1160(6)	0.050(2)
S7	0.7102(4)	0.2384(4)	1.1023(5)	0.046(2)
S8	0.7398(4)	-0.0152(4)	1.0272(6)	0.051(2)
S9	0.6166(4)	0.0739(4)	1.0102(5)	0.042(2)
S10	0.5820(5)	-0.1049(4)	0.9259(6)	0.062(2)
S11	0.8596(5)	0.3700(4)	1.3386(6)	0.055(2)
S12	0.8658(5)	0.3697(4)	1.1309(6)	0.057(2)
S13	0.8613(5)	0.5586(4)	1.3226(6)	0.071(2)
S14	0.8656(4)	0.5601(4)	1.1509(6)	0.057(2)
S15	0.8635(11)	0.72709(13)	1.2361(15)	0.1092(10)
C1	1.0240(15)	0.1303(13)	1.4138(19)	0.044(7)
C2	0.9670(11)	0.0884(12)	1.4043(17)	0.035(5)
C3	1.0832(16)	-0.0221(14)	1.4891(20)	0.044(7)
C4	0.7640(15)	0.0964(13)	1.0690(18)	0.049(7)
C5	0.7039(14)	0.1372(12)	1.0643(16)	0.033(6)
C6	0.6429(15)	-0.0178(14)	0.9855(18)	0.042(7)
C7	0.8669(15)	0.4548(14)	1.2768(20)	0.058(8)
C8	0.8687(13)	0.4619(14)	1.1967(18)	0.036(5)
C9	0.8598(23)	0.6202(5)	1.2284(34)	0.066(4)
N1	1.1371(9)	0.3231(10)	1.2334(12)	0.046(5)
N2	1.0993(10)	-0.1726(10)	1.2505(13)	0.047(5)
C11	1.1927(11)	0.3582(9)	1.2195(13)	0.057(5)
C12	1.2512(8)	0.4342(8)	1.3117(10)	0.072(4)
C21	1.0850(11)	0.3897(11)	1.2363(14)	0.050(5)
C22	1.0359(10)	0.4575(11)	1.1416(13)	0.096(7)
C31	1.0692(13)	0.2731(13)	1.1217(18)	0.060(7)
C32	1.0143(9)	0.2175(9)	1.1224(12)	0.072(4)
C41	1.1838(10)	0.2697(9)	1.3318(13)	0.048(5)
C42	1.2164(11)	0.1908(11)	1.3213(14)	0.083(6)
C51	1.0568(11)	-0.2374(10)	1.1544(14)	0.060(6)
C52	0.9928(10)	-0.3011(11)	1.1399(14)	0.074(6)
C61	1.1306(12)	-0.1076(12)	1.2201(16)	0.065(6)
C62	1.1774(10)	0.0388(9)	1.3002(13)	0.074(5)
C71	1.0359(10)	-0.1249(10)	1.2517(13)	0.055(5)
C72	0.9602(8)	-0.0924(8)	1.1500(10)	0.069(4)
C81	1.1557(12)	-0.2191(13)	1.3532(17)	0.053(7)
C82	1.2288(8)	-0.2614(8)	1.3756(11)	0.069(4)

TABLE II Atomic coordinates and Ueq values $(Å^2)$ for complex 1

reflections with $I > 2\sigma(I)$ of 5099 unique reflections were used to solve the structure using the SHELXTL program.¹⁴ The atoms of the anion were refined with anisotropic temperature factors. The positions of the hydrogen atoms were generated geometrically (C–H bond fixed at 0.96 Å), assigned isotropic thermal parameters, and allowed to ride on their respective parent C atoms before the final cycle of least-squares refinement.

Atom	x/a	y/b	z/c	Ueq
Pb	1.00028(4)	0.24357(4)	- 0.05193(4)	0.03168(8)
S 1	0.9596(3)	0.3494(3)	-0.3232(3)	0.0324(5)
S2	1.2236(3)	0.0536(3)	- 0.1549(2)	0.0310(5)
S4	1.2975(3)	- 0.0166(3)	- 0.4639(2)	0.0282(5)
S3	1.0850(3)	0.2279(3)	-0.6007(2)	0.0318(5)
S5	1.2668(3)	0.0108(3)	- 0.7969(2)	0.0358(6)
0	1.2334(8)	0.4417(9)	0.0794(9)	0.050(2)
Ν	1.505(1)	0.4612(9)	0.212(1)	0.042(2)
C1	1.087(1)	0.2156(9)	- 0.4087(9)	0.025(2)
C2	1.190(1)	0.0979(9)	- 0.3444(9)	0.026(2)
C3	1.218(1)	0.071(1)	- 0.6284(9)	0.026(2)
C4	1.671(1)	0.386(1)	0.248(2)	0.067(4)
C5	1.484(2)	0.622(2)	0.283(2)	0.095(5)
C6	1.380(1)	0.388(1)	0.117(1)	0.043(3)

TABLE III Atomic coordinates and Ueq values $(Å^2)$ for complex 2

$[Pb(dmit)(DMF)]_n, 2$

The crystal chosen for data collection had dimensions $0.075 \times 0.125 \times 0.20$ mm. A total of 2147 reflections were collected, of which 2147 were unique and 1972 observed, $I > 2.0\sigma(I)$. Intensities were corrected for Lorentz and polarization effects, and a DIFABS¹⁵ empirical absorption correction was applied. The Pb atom was located by direct methods using MULTAN¹⁶ and the remaining non-H atoms were located in the succeeding Fourier syntheses. H atoms were placed in geometrically calculated positions, with C-H distance 0.95 Å, but their parameters were not included in the refinement. All calculation were performed on a Compaq PL4/50 computer using the MolEN program package.¹⁷

RESULTS AND DISCUSSION

The syntheses of complexes 1 and 2 can be described as follows:

$$Na_2dmit + SnCl_2 + Et_4NBr \xrightarrow{O_2} [Et_4N]_2[Sn(dmit)_3]$$
(1)

$$n[\text{Et}_4\text{N}]_2[\text{MoO}(\text{dmit})_2] + n\text{Pb}(\text{NO}_3)_2 \xrightarrow{\text{DMF}} [\text{Pb}(\text{dmit})(\text{DMF})]_n$$
 (2)

The reaction of Na₂dmit with SnCl₂ leads to the formation of $[Sn^{IV}(dmit)_3]^{2-}$ instead of $[Sn^{II}(dmit)_3]^{4-}$, which may be because $[Sn(dmit)_3]^{4-}$ is easily oxidized to $[Sn(dmit)_3]^{2-}$ by atmospheric oxygen. The synthesis of complex **2** reported here is based on equation (2). An attempt has been made to synthesize complex **2** by the reaction of Na₂dmit with Pb(NO₃)₂, but it

T.-L. SHENG et al.

failed. Complexes 1 and 2 are stable and remain unaffected by atmospheric oxygen and moisture for long times.

The structure of 1 consists of two anions and four cations in the unit cell. Selected bond lengths and angles for 1 are listed in Table IV. The numbering scheme and coordination geometry of 1 are shown in Figure 1; the tin atom

Atom	Ato	m	Distance	Atom	A	Atom	
Sn	S7	1	2.512(8)	S8	C6		1.73(3)
Sn	S1	1	2.533(6)	S 8		C4	1.82(2)
Sn	S1		2.534(7)	S9	C6		1.68(2)
Sn	S12		2.547(7)	S9	C5		1.77(2)
Sn	S2		2.565(7)	S10	C6		1.68(2)
Sn	S 6		2.579(7)	S11	C7		1.73(2)
S1	Cl		1.82(2)	S12	C8		1.77(2)
S2	C2	2	1.79(2)	S13	C9		1.79(3)
S3	Cl		1.73(2)	S13	C7		1.82(2)
S3	CE	5	1.76(2)	S14	C9		1.64(3)
S4	C2	2	1.68(2)	S14	C8		1.68(2)
S4	C	3	1.72(3)	S15		C9	1.669(9)
S5	C	3	1.62(2)	C1		C2	1.32(3)
S6	C4	1	1.67(3)	C4		C5	1.41(3)
S 7	C	5	1.67(2)	C7	1	C8	1.334(12)
Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
S 7	Sn	S11	91.5(2)	C2	Cl	S 3	117.1(16)
S7	Sn	S1	171.40(6)	C2	C1	S 1	127.4(18)
S11	Sn	S 1	95.3(2)	S 3	Cl	S 1	115.4(15)
S7	Sn	S12	94.2(2)	C1	C2	S 4	117.0(15)
S11	Sn	S12	86.19(6)	C1	C2	S 2	123.5(16)
S 1	Sn	S12	91.4(3)	S4	C2	S 2	119.3(11)
S 7	Sn	S2	90.6(2)	S 5	C3	S4	127.5(15)
S11	Sn	S2	91.1(2)	S 5	C3	S 3	121.4(16)
S1	Sn	S2	84.0(2)	S4	C3	S3	111.1(13)
S12	Sn	S2	174.5(3)	C5	C4	S 6	129.0(17)
S7	Sn	S6	83.8(2)	C5	C4	S 8	112.5(17)
S11	Sn	S6	174.5(3)	S 6	C4	S 8	118.2(14)
S1	Sn	S6	89.7(2)	C4	C5	S 7	124.1(17)
S12	Sn	S6	91.5(2)	C4	C5	S9	115.2(16)
S2	Sn	S 6	91.56(7)	S 7	C5	S9	120.7(14)
Cl	S 1	Sn	96.3(8)	S9	C6	S10	124.0(15)
C2	S2	Sn	96.5(7)	S9	C6	S 8	113.7(13)
CI	S 3	C3	96.1(12)	S10	C6	S 8	122.3(14)
C2	S4	C3	98.8(10)	C8	C7	S11	134.8(23)
C4	S6	Sn	94.4(8)	C8	C7	S13	112.3(23)
C5	S 7	Sn	97.6(8)	S11	C7	S13	112.6(14)
C6	S 8	C4	98.4(11)	C7	C8	S14	119.3(23)
C6	S9	C5	99.8(11)	C7	C8	S12	120.8(22)
C7	S11	Sn	97.0(8)	S14	C8	S12	119.7(12)
C8	S12	Sn	101.1(7)	S14	C9	S15	127.1(21)
C9	S13	C7	95.4(12)	S14	C9	S13	112.6(4)
C9	S14	C8	100.4(11)	S15	C9	S13	119.9(22)

TABLE IV Selected bond distances (Å) and angles (°) for complex 1

FIGURE 1 The structure of complex 1.

is six-coordinated by six sulfur atoms from three dmit ligands to form an octahedral geometry. The six sulfur donor atoms are located around tin at an average distance of 2.545(7) Å, which is in quite good accordinance with the value 2.535(2) Å reported for the internuclear distances in $[(C_2H_5)_2PS_2]_2$ -SnI₂,¹⁸ but slightly longer than the value 2.471(2) Å reported for Sn(CH₂-CH₂CO₂Me)₂(C₃S₅)¹⁹ and 2.484(1) Å (av.) for MePhSn(dmit).²⁰ All three SnS₂C₂S₂CS units are nearly planar. The average C–S (1.73(2) Å) and C–C (1.35(3) Å) distances in the chelate rings are similar to those found for Sn(CH₂-CH₂CO₂Me)₂(C₃S₅)¹⁹ and MePhSn(dmit).²⁰ As shown in Figure 2, in complex 1, interanionic S···S contacts shorter than 3.7 Å involve S1···S7'

FIGURE 2 The one-dimensional network formed by complex 1 through $S \cdots S$ contacts less than 3.7 Å viewed down the c axis.

FIGURE 3 Environment of the Pb atom in complex 2.

(3.44(1) Å), $S1 \cdots S9' (3.31(1) \text{ Å})$ and $S3 \cdots S7' (3.44(2) \text{ Å})$, through which the anions in complex 1 form a one-dimensional network.

Complex 2 consists of repeating units of Pb(dmit)(DMF). Figure 3 shows the geometry around the Pb atom in complex 2. As shown in Figure 3, the

MAIN GROUP COMPLEXES

lead atom is six-coordinated to two S atoms of the dithiolate fragment of dmit ligands and two S atoms of thiocarbonyl groups of dmit ligands in adjacent units, together with two O atoms of DMF ligands. The geometry around the lead can be described as a distorted octahedral structure. In complex 2, the Pb-S_{C-S} (S_{C-S} stands for the sulfur atom of the dithiolate fragment of dmit ligand) bond distances in the repeating unit range from 2.633(2) to 2.648(2) Å, slightly longer than those (from 2.523(5) to 2.580(4) Å) in (Ph₃Pb)₂(dmit),²¹ whereas the Pb-S_{C-S} (S_{C-S} stands for the sulfur atom

FIGURE 4 Part of the two-dimensional polymer of complex 2, (a) viewed down a axis; (b) viewed down b axis.

T.-L. SHENG et al.

Atom	Ato	m	Distance	Atom	Atom		Distance
Pb	S		2.648(2)	S2	C2		1.748(8)
Pb	S2	2	2.633(2)	S4	C2		1.727(8)
Pb	S5'a		3.495(2)	S4	C3		1.711(8)
Pb	S5″b		3.133(2)	S3	C1		1.734(8)
Pb	0		2.610(7)	S3	C3		1.707(8)
Pb	O'c		3.201(7)	S5	C3		1.669(9)
S 1	C1		1.734(8)	C1	C2		1.36(2)
Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
S 1	Pb	S2	82.35(7)	Pb	S 1	Cl	100.8(3)
SI	Pb	S5′	142.68(6)	Pb	S2	C2	101.4(3)
S1	РЬ	S5″	89.51(6)	C2	S4	C3	98.2(4)
S1	Pb	0	92.5(2)	Cl	S3	C3	98.5(4)
S 1	Pb	O ′	67.6(2)	Pb	0	C6	118.0(6)
S 2	Pb	S5′	61.43(6)	S1	C1	S3	117.4(4)
S2	РЬ	S5″	88.37(6)	S1	C1	C2	128.0(7)
S2	Pb	0	89.4(2)	S 3	C1	C2	114.6(6)
S2	Pb	Ο′	148.7(2)	S2	C2	S4	117.3(4)
S5′	Pb	S5″	97.62(6)	S2	C2	Cl	126.7(7)
S5′	Pb	0	79.3(2)	S4	C2	C1	116.0(7)
S5′	Pb	0′	145.2(1)	S4	C3	S3	112.6(5)
S5″	Pb	0	176.8(2)	S 4	C3	S 5	123.7(5)
S5″	Pb	Ο′	99.6(1)	S3	C3	S 5	123.7(5)
0	Pb	Ο′	83.6(2)				

TABLE V Selected bond distances (Å) and angles (°) for complex 2

x, y, 1+z; b2-x, -y, -1-z; c2-x, 1-y, -z.

of the thiocarbonyl group of dmit ligand) distances between the repeating units (Pb-S5', 3.133(2)Å, Pb-S5", 3.495(2)Å) are relatively longer and close to corresponding Pb-S distances found in [Pb{S₂(i-C₃H₇O)₂}₂]²² and found in [Pb(S₂COC₂H₅)₂].²³ It is noted that in **2** the sulfur atom of the thiocarbonyl group is able to coordinate and it does so. Through Pb-S_{C=S} and Pb-O interactions between repeating units, complex **2** form a twodimensional structural polymer as shown in Figure 4. The Pb···Pb distances in PbS₂Pb four-membered rings and PbO₂Pb four-membered rings of complex **2** are 4.35 and 4.37Å, respectively, close to those (range from 4.30 to 4.52Å) found in Pb[(CH₃)₂NC₄O₃]₂(OH₂)₂·H₂O, Pb[(C₂H₅)₂-NC₄O₃]₂(H₂O) and Pb(C₄O₄)₂(H₂O)₄.²⁴ Contrary to complex **1**, no S···S contacts less than 3.7Å are found in complex **2** (see Table V).

Acknowledgments

This research was supported by the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, the NSF of China, NSF of CAS and NSF of Fujian Province.

References

- (a) P. Cassoux, L. Valade, H. Kobayashi, A. Kobayashi, R.A. Clark and A.E. Underhill, *Coord. Chem. Rev.* 110, 115 (1991); (b) R.M. Olk, B. Olk, K.R. Dietzsch and E. Hoyer, *Coord. Chem. Rev.* 117, 99 (1992); (c) N. Svenstrup and J. Becher, *Synthesis* 215 (1995).
- [2] (a) L. Brossard, M. Ribault, M. Bousseau, L. Valade and P. Cassoux, C. R. Acad. Sci. (Paris), Série II B143, 378 (1986); (b) L. Brossard, M. Ribault, L. Valade and P. Cassoux, Phys. B & C (Amsterdam), 143, 378 (1986); (c) M. Bousseau, L. Valade, J.-P. Legros, P. Cassoux, M. Garbauskas and L.V. Interrante, J. Am. Chem. Soc. 108, 1908 (1986).
- [3] (a) A. Kobayashi, H. Kim, Y. Sasaki, R. Kato, H. Kobayashi, S. Moriyama, Y. Nishio, K. Kajita and W. Sasaki, *Chem. Lett.* 1819 (1987); (b) K. Kajita, Y. Nishio, S. Moriyama, R. Kato, H. Kobayashi and W. Sasaki, *Solid State Commun.* 65, 361 (1988).
- [4] A. Kobayashi, H. Kobayashi, A. Miyamoto, R. Kato, R.A. Clark and A.E. Underhill, Chem. Lett. 2163 (1991).
- [5] H. Kobayashi, K. Bun, T. Natio, R. Kato and A. Kobayashi, Chem. Lett. 1909 (1992).
- [6] L. Brossard, M. Ribault, L. Valade and P. Cassoux, J. Phys. (Paris), 50, 1521 (1989).
- [7] L. Brossard, H. Hudequint, M. Ribault, L. Valade, J.-P. Legros and P. Cassoux, Synth. Met. 27, B157 (1988).
- [8] H. Tajima, M. Inokuchi, A. Kobayashi, T. Ohta, R. Kato, H. Kobayashi and H. Karoda, Chem. Lett. 1235 (1993).
- [9] T.-L. Sheng, X.-T. Wu, W.-J. Zhang, Q.-M. Wang, X.-C. Gao and P. Lin, J. Chem. Soc. Chem. Commun. 263 (1998).
- [10] T.-L. Sheng, H.-J. Li, Q. Huang and X.-T. Wu, Acta Cryst. C51, 2524 (1995).
- [11] T.-L. Sheng, X.-T. Wu, Q. Huang and Q.-M. Wang, Acta Cryst. C52, 539 (1996).
- [12] G. Steimecke, H.-J. Sieler, R. Kirmse and E. Hoyer, Phosphorus and Sulfur 7, 49 (1979).
- [13] T.-L. Sheng and X.-T. Wu, unpublished results.
- [14] G.M. Sheldrick, SHELXTL93, Program for the Refinement of Crystal Structures (University of Göttingen, 1993).
- [15] N. Walker and D. Stuart, Acta. Cryst. A39, 159 (1983).
- [16] P. Main, MULTAN, Version 3.1.0, Program for the Automatic Solution of Crystal Structures from X-ray Diffraction Data by the Multiple Starting Point Tangent Formula (University of York, England, 1983).
- [17] MolEN, An interactive Structure Solution Procedure (Enraf-Nonius, Delft, The Netherlands, 1982).
- [18] K.C. Molloy, M.B. Hossain, D. van der Helm, J.J. Zuckerman and F.P. Mullins, *Inorg. Chem.* 20, 2172 (1981).
- [19] H. Buchanan, R.A. Howie, A. Khan, G.M. Spencer, J.L. Wardell and J.H. Aupers, J. Chem. Soc., Dalton Trans. 541 (1996).
- [20] S.M.S.V. Doidge-Harrison, J.T.S. Irvin, A. Khan, G.M. Spencer, J.L. Wardell and J.H. Aupers, J. Organomet. Chem. 516, 199 (1996).
- [21] S.M.S.V. Doidge-Harrison, J.T.S. Irvin, G.M. Spencer, J.L. Wardell, P. Ganis, G. Valle and G. Tagliavini, *Polyhedron* 15, 1807 (1996).
- [22] S.L. Lawton and G.T. Kokotailo, Inorg. Chem. 11, 363 (1972).
- [23] H. Hagihara and S. Yamashita, Acta Cryst. 22, 350 (1966).
- [24] L.A. Hall, D.J. Williams, S. Menzer and A.J.P. White, Inorg. Chem. 36, 3096 (1997).